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We study the phenomenon of macroscopic quantum tunneling �MQT� in a finite-size Josephson junction �JJ�
with an externally applied magnetic field. As is well known, the problem of MQT in a pointlike JJ is reduced
to the study of the under-barrier motion of a quantum particle in the washboard potential. In the case of a
finite-size JJ placed in magnetic field, this problem is considerably more complex since, besides the phase, the
potential itself depends on space variables. We find the general expressions both for the crossover temperature
T0 between thermally activated and MQT regimes and the escape time �esc. It turns out that in the proximity of
particular values of magnetic field, the crossover temperature can vary nonmonotonically.
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I. INTRODUCTION

The Josephson effect1,2 allows the investigation of funda-
mental aspects of quantum phenomena such as the macro-
scopic quantum tunneling �MQT�,3 which has been more re-
cently observed also in high-Tc biepitaxial YBCO
junctions.4,5 Interesting results have been obtained also in
various Bi-2212 structures, particularly referred to as “intrin-
sic” Josephson junctions �JJ�.

Usually the phenomenon of MQT is considered in a
“pointlike” JJ, i.e., completely neglecting the finiteness of
the junction size L �some exceptions can be found in theo-
retical and experimental6 papers7,8�. This �zero order in L�
approximation is based on the assumption that the junction
size is much smaller than all other related parameters of the
problem such as the Josephson penetration depth �J
= ��c2 /8�ejc�eff�1/2 and the characteristic length LH
=�H

2 /�eff �with �H= ��c /eH�1/2 as the standard quantum-
mechanical magnetic length�.9 Josephson critical current
density jc is determined by the Ambegaokar-Baratoff
theory.2,10 The effective length �eff depends on the relation
between the thickness d�i� �i=L ,R� of the superconductive
electrodes and the London penetration depth ��i� of the bulk
superconductor materials, which the electrodes are made of.
In the limiting cases one can find,11

�eff = ���L� + ��R� + dox, ��i� � d�i�

d�L� + d�R� + dox, d�i� � ��i�
� . �1�

Thermal fluctuations in JJ produce a typical “rounding” of
the Josephson current branch in the I-V curves.12,13 Since the
pioneering measurements of thermal fluctuation phenomena
�to obtain such an effect�, the required condition between
thermal energy and Josephson coupling energy �EJ�T� was
usually realized not by increasing the temperature, rather by
reducing the value of EJ by applying a proper magnetic field.

This, even in the case of small JJ �L��J�, has significant
implications which become of paramount importance in
MQT activation.

In this context the authors14 reported the analysis of the
role of finiteness of the junction’s length L obtaining the
general expression for the crossover temperature T0 between
thermally activated and MQT regimes for such JJ. The es-
cape time �esc was calculated with the exponential accuracy
in the first approximation in �L /LH�2 for temperatures T
�T0 and for small region below T0. It was demonstrated that
the account for the junction’s size results in the appearance
of a strong sensitivity of the MQT process on applied mag-
netic field, making the crossover temperature be nonmono-
tonic function of it. Since magnetic field is an easily adjust-
able parameter, it can become an important tool in the study
of such a quantum coherent phenomenon without modifica-
tion of other junction parameters.

In the present paper we will proceed and develop the
study of MQT in a finite-size JJ placed in magnetic field �see
Fig. 1�. First we will report the mean-field solutions for the
effective action of such a finite-size Josephson system and
find the values of the effective action at the extremal trajec-
tories. Then, the explicit form of phase trajectories close to
the extremal ones and the corresponding action functional
will be found. This will allow us to find the pre-exponential
factor in the expression for �esc of such extended system in a
wide temperature region, including the crossover point T0. It
turns out that in the vicinity of magnetic-field values Hn
=	0n / �L�eff� �	0=��c /e is the magnetic-flux quantum and
c is the light velocity�, the escape time can vary
nonmonotonically—a phenomenon which becomes the fin-
gerprint for the experimental check of the proposed theory.

In our analysis we will suppose that L��J but will not
impose any restrictions on the relation between L and LH.
The whole analysis of the present work is referred to con-
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ventional �s wave� superconductors. The recent observation
of MQT in high-Tc structures would also deserve great atten-
tion in connection to the role of the d-wave order-parameter
symmetry but it will be considered elsewhere.

II. GENERALITIES

A. Escape time

Starting the discussion of the phenomenon of Josephson
current decay in a finite-size JJ, let us recall the substance of
this process in a pointlike junction.

Let us consider a current biased Josephson tunnel junc-
tion. In the framework of the capacitively shunted junction
model, it can be represented by the electronic equivalent cir-
cuit, where the resistance of the external circuit �Rext�, the
intrinsic junction capacitance �C�, and the junction resistance
�RT�—assumed as a linear ohmic element—are connected in
parallel.2 The current balance in the circuit can be accounted
by the following equation:

I = Ic sin 2
 +
V

RT
+ C

dV

dt
, �2�

where


 = e� V dt �3�

is the relative phase between the two superconductors. Equa-
tion �2� can be rewritten in the form

MC
�2


�t2 + �
�


�t
+

�U�
�
�


= 0, �4�

where MC=�2C /e2, �=��e2RT�−1, and

U�
� = − ��I

e

 + EJ cos 2
�, EJ =

�Ic

2e
. �5�

Equation �4� can be considered as the equation of motion
with friction �� is its viscosity� of a particle of mass MC in
the washboard potential �5� �see Fig. 2�. The values of the
bias current I and the critical current Ic determine the slope
of the potential U�
� and the depth of valleys.

Let us study the case I� Ic. The minima of potential �5�
correspond to the metastable states of the junction. We will
assume the junction viscosity to be small enough not to af-
fect noticeably the particle oscillations in the well and its
under-barrier motion. At high temperatures the thermally ac-
tivated escape dominates and the result of classical Kramers
problem of a particle moving in the washboard potential
U�x� is valid,

� = 	�esc
�th�
−1 �

p

2�
exp�−

�U

T
 , �6�

where the characteristic plasma frequency p is given by the
interpolation formula

p = � 1

MC

d2U�
�
d
2 


min

1/2
= �2�cIc

	0C
�1/2�1 − � I

Ic
�21/4

�7�

and �U=Umax−Umin. The extremes of potential Umax and
Umin correspond to the local maximum and local minimum
of the potential energy, respectively.

When the temperature decreases, thermal activation be-
comes less and less probable and the process of quantum
tunneling through the barrier becomes important. Near some
temperature T0 the crossover between Arrhenius law and
quantum tunneling regime takes place. The latter can be con-
sidered as the under-barrier motion of the particle �instanton
propagation�.

At very low temperatures �T�p� the tunneling takes
place only from the lowest level of the energy spectrum.
When Ic− I� Ic, the escape rate can be presented in the
form15

I

H

L

d(L) d(R)

S

S

d(ox)
I

FIG. 1. �Color online� Josephson-junction geometry.
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FIG. 2. Washboard potential.
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� = 	�esc
�qm�
−1 =

6p

��
�6�U

p
�1/2

exp�−
36�U

5p
 . �8�

One can see that the main difference between Eqs. �6� and
�8� is in the temperature dependence of the exponent: in the
classical case, Eq. �6�, this is the Boltzmann activation law
with the exponent equal to the barrier height divided by T,
while in the case of the quantum tunneling, Eq. �8�, T in the
exponent has to be substituted by p.

At an arbitrary temperature the combined tunneling oc-
curs by the following scheme. First, the particle excites in
the thermal activation manner and at some moment gets up
to the energy level En �calculated neglecting tunneling� and
then, by means of quantum tunneling, passes through the
barrier. The total tunneling probability is determined by the
sum over all quantum levels of corresponding products of the
classical and quantum probabilities,

� � �
n

exp�−
En

T
�exp	− A�En�
 . �9�

Here

A�En� =� �2MC	En − U�
�
d
 �10�

is the action corresponding to the under-barrier motion of the
particle with energy En.

One can say that quantum tunneling occurs when the par-
ticle reaches such a level Etun at which the probability of the
direct quantum tunneling through the barrier becomes larger
than the probability of the activation jump on the higher
energy levels with further tunneling through the barrier.
Quantitatively this can be formulated as the condition for the
extremum of the exponent in Eq. �9�,

� �A�E�
�E

�
Etun

= −
1

T
. �11�

Condition �11� implies that the period of the particle oscilla-
tion in the inverted potential is equal to 1 /T. With the growth
of temperature, the energy Etun increases and when T
=p /2� it reaches the barrier height. At higher temperatures
the classical activation escape scheme is realized.

The value of the escape time �esc of the finite-size JJ in
magnetic field can be determined in the framework of the
general method of functional integration. In this approach the
escape rate of the MQT, which is defined by the imaginary
part of the free energy �esc

−1 =2 Im F, can be expressed in
terms of the partition function of the system16

F = − T ln Z , �12�

where the latter is defined by the functional integral over all
possible “surfaces” ��r ,��,

Z =� D��r,��exp�− A	��r,��
� , �13�

where ��r ,�� is the phase difference on the junction taken at
the point r and at the imaginary time moment �. Here
A	��r ,��
 is the effective action of such extended system.

The problem of MQT makes sense only within the frame-
work of the quasiclassical approximation, i.e., in assumption
that the value of escape time considerably exceeds all char-
acteristic time scales of the internal motions. In this case, the
imaginary part of the partition function is small in compari-
son with the real one, hence,

�esc
−1 = 2T

Im� D��r,��exp�− A	��r,��
�

Re� D��r,��exp�− A	��r,��
�
. �14�

The presence of the nonzero imaginary part of partition
function in the numerator of Eq. �14� is related to the fact
that one of the action’s A	��r ,��
 extremal trajectories
	�sdl�r ,��
 is of the saddle type. As a matter of the fact, the
negative eigenvalue corresponds to one of the modes around
this saddle trajectory 	see below Eqs. �20� and �21�
. As a
consequence, in the process of the functional integration in
Eq. �14�, the contour of integration over this mode should be
shifted to the imaginary axis,16–18 which leads to the appear-
ance of Im Z. What concerns the real part of the partition
function is that it has be calculated at the minimal trajectory
�min�r ,��.

For high enough temperatures T�T0, or in narrow vicin-
ity of T0 ��T−T0��T0�, both trajectories �sdl�r� and �min�r�
turn out to be time independent16,19 and the exponential fac-
tor in �esc

−1 	in analogy with Eq. �6�
 is determined by the
expression

�esc
−1 � exp�− �Amin

sdl � ,

�Amin
sdl = A	�sdl�r�
 − A	�min�r�
 . �15�

In the assumption of zero viscosity, one can obtain both
thermally activation and MQT escaped times �the latter even
with pre-exponential factor accuracy�.16 For temperatures
above but not too close to T0, it is read as

�esc
−1 = T0

sinh� p

2T�
sin��T0/T�

exp�− �Amin
sdl � . �16�

Hence, in order to find the escape time 	Eqs. �15� and
�16�
, one has to calculate the values of action at trajectories
�sdl and �min. The crossover temperature T0 turns to be the
bifurcation point, below which the time-dependent solution
for the saddle-point trajectory �sdl�r ,�� becomes more favor-
able than the static one and the definition of escape time
presents more sophisticated problems.

B. Effective action

The effective action of a JJ placed in external magnetic
field H as a function of flowing through the junction current
I in the first order in transparency can be written down in the
most general form basing on the results of20,21
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A	��r,��
 =
1

S
�

−1/2T

1/2T

d�� d2r� C

2e2� ���r,��
��

2

−
�

e
I��r,���

−
��

2RNe2�
−1/2T

1/2T

d�1��1 − cos	��r,�� − ��r,�1�
��

��L�� − �1��R�� − �1� + cos	��r,�� + ��r,�1�


��L�� − �1��R�� − �1�� +
��T2

Rsh e2

��
−1/2T

1/2T

d�1
sin2�	��r,�� − ��r,�1�
/2�

sin2	�T�� − �1�
 �
+

�2c2

8�e2�eff
�

−1/2T

1/2T

d�� d2r� ���r,��
�r

−
e�eff

�c
�H � n�2

.

�17�

Here C is the junction capacitance, RN is the tunnel resis-
tance, Rsh is the shunt resistance, and ��L,R���� and ��L,R����
are integrated over the energy variable normal and anoma-
lous Green’s functions, respectively. The integrals are carried
out over the imaginary time and the junction area. The first
term corresponds to the kinetic energy of the junction. The
second and fourth terms describe the contribution of the po-
tential energy to the action. The third term corresponds to the
capacitance renormalization,16 while the last term in Eq. �17�
accounts for the finite size of the junction and the magnetic-
field contribution to the effective action.22

The natural assumption T0�Tc, side by side with the as-
sumed above condition L��J, allows one to considerably
simplify the general expression Eq. �17�, which was done in
the leading approximation in �L /�J�2 in Ref. 14. It was
shown that in these conditions, the third term in Eq. �17�
disappears being reduced to renormalization of the capacity
C in the first term

C� = C +
��

2RN
�

−�

� d

2�
� ��L

�
�� ��R

�
� �18�

and changing in the definite way the shape of ��r ,��.
Variation of Eq. �17� on � results in getting the quasiclas-

sical equations of motion,11 which define the extremal trajec-
tories,

��A	�

��

�
�=�extr�r,��

= 0. �19�

Near the extremal trajectory �extr�r ,��, the deviation of the
function ��r ,�� can be represented in the form of expansion
by normalized functions �n

k�r ,��,

��r,�� = �extr�r,�� + � Bn
k�n

k�r,�� , �20�

which are the eigenfunctions of the equation

�2A	�

��2 �n

k�r,�� = �n
k�n

k�r,�� . �21�

In this representation the action �17� near the extremal tra-
jectory �extr�r ,�� is presented by Gaussian type functional
integral over functions �n

k�r ,��, which can be carried out
analytically. Thus, the problem of definition of the value of
escape time is reduced to finding of the eigenvalues �n

k of the
Eq. �21�.16

We will restrict our consideration within the two regions
of temperatures: �i� T�T0 and �ii� �T−T0��T0. This choice
is related to the fact that in both these regions, one can use
the functions ��r ,�� in the form �20� with time independent
�extr�r�. The width of the crossover region between thermal
activation and MQT regimes turns to be much smaller than
T0 and will be estimated below.

III. EXTREMAL TRAJECTORIES IN STATIC
APPROXIMATION

Let us find the explicit form of the extremal trajectory
�extr in static approximation, i.e., in the case when it can be
considered as time independent. Moreover, in the geometry
under consideration, when the magnetic field is applied along
the junction, the phase depends only on one coordinate x.
Substitution of �extr�x ,����extr�x� in Eq. �19� leads to the
equation

− �J
2�2�extr�x�

�x2 +
1

2
sin 2�extr�x� =

I

2jcS
. �22�

We will look for its solutions in the form

�extr�x� = �0 −
x

LH
+ �̃�x� , �23�

where �0 is a constant and ��̃�x��=0. Corresponding bound-
ary conditions are

� ��̃

�x
�

x=−L/2
= � ��̃

�x
�

x=L/2
= 0. �24�

One can look for solutions of Eq. �22� in the frameworks
of the perturbation theory by the parameter �L /�J�2. In the
first approximation one can rewrite Eq. �22� in the form

− �J
2�2�̃�x�

�x2 =
I

2Sjc
−

1

2
sin�2��0 −

x

LH
� . �25�

This equation with the given above boundary conditions is
easily solvable,

�̃�x� =
1

2
� LH

2�J
�2��sin� 2x

LH
� −

2x

LH
cos

L

LH
cos 2�0

+ �LH

L
sin� L

LH
� − cos� 2x

LH
�

+ sin� L

LH
�� L

6LH
−

2x2

LLH
�sin 2�0� . �26�

The phase ��x ,�0� is a periodic function of �0 with the
period �. It turns out that some critical value of the current
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Icr�H� exists such that for all I� Icr, one can find for each
period two solutions for �0. The exception presents narrow
regions of certain magnetic-field values, which will be found
and investigated below. It will be shown that for such re-
gions, four different solutions for �0 exist in the interval
�−� /2, � /2�. Two solutions correspond to the minimum of
action while the other two to its saddle point. When I= Icr
pair solutions �one corresponding to the minimum, the other
to the saddle point of the action� confluent in one, while for
I� Icr the static solution does not exist at all. In the simple
case of a pointlike junction, one can find

�00
min =

1

2
arcsin� I

jcS
� �27�

and

�00
sdl =

�

2
−

1

2
arcsin� I

jcS
� . �28�

When the junction has finite width, the analysis is more
complicated. Nevertheless the smallness L��J allows us to
find the relation between �0 and I, i.e., to find �extr�x , I�.
Indeed, integrating Eq. �22� over x, one can obtain

I = jcS�
−L/2

L/2 dx

L
sin�2�0 −

2x

LH
+ 2�̃�x� . �29�

Substituting in this expression �̃�x� according to Eq. �26� and
performing integration, one finds the equation which implic-
itly relates �0 to I,

LH

L
sin� L

LH
�sin 2�0 +

1

2
� LH

2�J
�2

,

��LH

L
�sin 4�0 =

I

jcS
, �30�

where

��LH

L
� = 2�LH

L
�2

sin2� L

LH
� + cos2� L

LH
� −

3LH

2L
sin�2L

LH
�

−
1

3
sin2� L

LH
� . �31�

The critical current Icr�H� is determined by the value I��̂0�,
where the point �̂0 is the solution of the equation

� �I��0�
��0

�
�0=�̂0

= 0, Icr�H� = I��̂0� . �32�

IV. VALUE OF EFFECTIVE ACTION AT THE EXTREMAL
TRAJECTORIES

Let us find the value of effective action of the finite-size
JJ on the extremal trajectory �extr�x�. The knowledge of
A	�extr�x�
 will allow us to find the value of escape time with
the exponential accuracy in the wide interval of temperatures
above T0 or close enough to this bifurcation point ��T−T0�
�T0�.16 Further definition of the pre-exponential factor will

require one to perform the functional integration in Eq. �14�
over the trajectories close to the extremal one.

In the case when the phase trajectory ��x ,�����x� does
not depend on imaginary time �static approximation�, Eq.
�17� is considerably simplified,

A	��x�
 =
�Sjc

eLT
�

−L/2

L/2

dx�−
I

Sjc
��x� −

1

2
cos 2��x�

+ �J
2� ���x�

�x
+

1

LH
2� . �33�

The straightforward integration of this expression with the
phase ��x� determined from the Eqs. �23� and �26� results in

A��0� = −
�I

eT
�0 −

�Sjc

2eT
�LH

L
�sin� L

LH
�cos 2�0

+
�Sjc

8eT
� LH

2�J
�2���LH

L
� − ��LH

L
�cos 4�0 ,

�34�

with

��LH

L
� = 2���LH

L
�2

+
1

3
sin2� L

LH
� − 1� . �35�

This expression already gives, in explicit form, the value
of action both for minimal and saddle trajectories 	deter-
mined as a function of current and magnetic field by Eq.
�30�
. Let us mention that Eq. �30� could be obtained from
Eq. �34� by deriving the action and equating this derivative
to zero: �A��0� /��0=0. Moreover, by calculating the second
derivative of the action �34�, one can find another useful
relation,

�2A��0�
�2�0

=
2�Sjc

eT
��LH

L
�sin� L

LH
�cos 2�0

+ �� LH

2�J
�2

��LH

L
�cos 4�0 . �36�

Note that both Eqs. �30� and �34� are valid for any value
of magnetic field, even in the region where the second �cor-
rection� term in Eq. �30� becomes of the order or even larger
than the first one. Equation �32� for the value of �̂0 can be
written in the form

�1 cos 2�̂0 + 2�2 cos 4�̂0 = 0, �37�

where

�1 =
LH

L
sin� L

LH
� and �2 =

1

2
� LH

2�J
�2

��LH

L
� . �38�

Solutions of Eq. �37� are

cos 2�̂0 = −
�1

4�2
��� �1

4�2
�2

+
1

2
. �39�

In the case when ��1 /�2��1, the only physically sensible
solutions are given by the equation
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cos 2�̂0 =
�1

4�2
��1 + 8��2

�1
�2

− 1 . �40�

When ��1 /�2��1, the solutions corresponding to both
signs in Eq. �39� can be realized. This is the hysteresis do-
main; the type of solution here depends on the prehistory of
magnetic-field variation. At special points Hn
=��cn / �eL�eff�, where L=�nLH �n=0,1 ,2. . .�, both states
on each period start to be equivalent.

Let us return to Eq. �30�. It can be rewritten by means of
the functions �1�H� and �2�H� 	see Eq. �38�
 as

�1 sin 2�0 + �2 sin 4�0 =
I

jcS
. �41�

This equation can be solved exactly in the algebraic func-
tions but for simplicity we will find its solutions �0

min and �0
sdl

in the framework of the perturbation theory under the as-
sumption ��1�� ��2�. Simple algebra leads to the result

1

2
arcsin� I

jcS�1
� −

�2

�1
� I

jcS�1
� = ��0

min, if I/jcS�1 � 0

�0
sdl, if I/jcS�1 � 0

�
�42�

and

�

2
sign� I

jcS�1
� −

1

2
arcsin� I

jcS�1
� −

�2

�1
� I

jcS�1
�

= � �0
sdl, if I/jcS�1 � 0

�0
min, if I/jcS�1 � 0

� . �43�

The Eqs. �42� and �43� were obtained with the help of Eq.
�36�. Inserting the values of �0

min and �0
sdl to Eq. �34�, one can

obtain the final expression for the difference of actions on the
extremal trajectories,

�Amin
sdl = A��0

sdl� − A��0
min� = −

�I

eT
��/2 − arcsin� I

jcS�1
��

+
�jcS

eT
�1 − � I

jcS�1
�2�LH

L
�sin� L

LH
�

��1 + 2��2

�1

I

jcS�1
�2sign� I

jcS�1
� , �44�

which determines in explicit form the exponential factor of
the escape time �15�. Looking at it one can notice the non-
trivial oscillatory type dependence of the escape time on the
value of external magnetic field, which we will discuss in
Sec. VI of this paper.

V. VALUE OF EFFECTIVE ACTION AT TRAJECTORIES
CLOSE TO THE EXTREMAL (PRE-EXPONENTIAL

FACTOR)

The expression �34� obtained above allows one to deter-
mine the escape rate with the exponential accuracy, which
indeed was done above. Determination of the pre-
exponential factor is a more delicate task, which requires
knowledge of the shape of trajectories close to the extremal

one with further functional integration of the action over
them. Now we pass to perform this program.

In real situation the bifurcation point T0 lies always much
below the critical temperature T0�Tc. For temperatures T0
�T�Tc or �T0−T��Tc, the general expression �17� can be
considerably simplified,

A	��x,��
 =
1

L
�

−1/2T

1/2T

d��
−L/2

L/2

dx� C

2e2� ���x,��
��

2

−
�

e
I��x,�� −

�jcS

2e
cos	2��x,��


+
�

4�Rshe
2�

−1/2T

1/2T

d�1���x,�� − ��x,��
� − �1

2

+
�jcS

2e
�J

2� ���x,��
�x

−
e�effHext

2

�c
2� . �45�

Let us find the solutions of Eq. �21� in the vicinity of both
time independent extremal trajectories �surfaces�. We will
look for them in the form

�n
k�x,�� = �T exp�i2�Tn���n

k�x� . �46�

Substitution of this expression in Eqs. �17�–�21� leads to
equations for �n

k�x�,

− �J
2�2�n

k�x�
�x2 + ���n2 + Qsh�n�� + cos	2�extr�x�
��n

k�x�

=
e

2�jc
�n

k�n
k�x� , �47�

where we have introduced the Q-factor Qsh
−1=2�TRshC

� /�
and the parameter �=2�2T2C� / �e�jcS�.

Note that at the point T0, one has

��1
0 �T0� = 0, �48�

since at this point the first time-dependent solution for the
extremal trajectory appears.

Let us recall that Eq. �47� is valid for both extremal tra-
jectories �sdl and �min. We will look for its solutions in the
form of perturbation-theory series in parameter �L /�J�2.
There are two sets of corresponding eigenfunctions. In the
zero-order approximation, they can be odd or even in x.

For even values of k �k=2N ,N=0,1 ,2. . .�, we have

��n
2N �x� = cos�2�N

L
x� + ��n

2N �x� ,

�
−L/2

L/2

dx cos�2�N

L
x���n

2N �x� = 0. �49�

For odd values of k �k=2N+1,N=0,1 ,2. . .�, the eigen-
functions have the form

��n
2N+1�x� = sin���2N + 1�

L
x + ��n

2N+1�x� ,
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�
−L/2

L/2

dx sin���2N + 1�
L

x��n
2N+1�x� = 0. �50�

The last integrals in Eqs. �49� and �50� express the rela-
tions of orthogonality between the first-order correction
��n

k �x� and corresponding zero approximation solution. The
functions � are supposed to be small enough: ���n

k �x���1.
For k�0, one can restrict consideration by the main ap-

proximation only and get from Eqs. �48�–�50� the following
expression for the eigenvalues ��n

k :

e

2�jc
��n

k = �J
2��k

L
�2

+ ��n2 + Qsh�n��

+
LH

L
sin� L

LH
��1 +

1

1 − � LH

L �k�2cos�2�0� .

�51�

For the eigenvalues with k=0 ���n
0 �, we have to find the

eigenvalues up to the first correction term in the parameter
�L /�J�2. From Eqs. �48� and �49� follows the equation for
��n

0 �x�,

− �J
2�2��n

0 �x�
�x2 + cos�2�0 −

2x

LH
� −

LH

L
sin� L

LH
�cos 2�0 = 0.

�52�

Its solution, in view of the boundary-condition Eq. �24�, is

��n
0 �x� = � LH

2�J
�2� 2x

LH
cos� L

LH
� − sin� 2x

LH
�sin 2�0

− � LH

2�J
�2�cos� 2x

LH
� −

LH

L
sin� L

LH
�

+
LH

L
sin� L

LH
��2x2

LH
2 −

L2

6LH
2 �cos 2�0. �53�

From Eqs. �47�, �49�, and �53� one finds the value of ��n
0

with the first correction terms 	compare to Eq. �51�
,

e

2�jc
��n

0 = ��n2 + Qsh�n�� +
LH

L
sin� L

LH
�cos 2�0

+ � LH

2�J
�2

��LH

L
�cos 4�0. �54�

One can notice that the eigenvalue �0
0 in the vicinity of the

saddle-point trajectory is negative. This property is an obvi-
ous consequence of the Eqs. �36� and �37� and this fact re-
sults in the appearance of the imaginary part of the partition
function �13�.

Substitution of n=1 to Eq. �54� gives us the explicit defi-
nition of the crossover temperature T0,14

��T0�	1 + Qsh�T0�
 +
LH

L
sin� L

LH
�cos 2�0

+ � LH

2�J
�2

��LH

L
�cos 4�0 = 0, �55�

where �0=�sdl and it is the function of external current I and

magnetic field H 	see Eqs. �30�–�42�
. For the critical value
of current, where �I /��0=0, T0=0. This equality follows im-
mediately from Eq. �55�. Note that our parameter of pertur-
bation theory is �LH /�J�2 and the corrections to eigenfunc-
tions 	Eqs. �49� and �53�
 are small by this parameter for all
values of the external current I and magnetic field H. That
means that the Eq. �30� is valid even in the vicinity of the
points where sin�L /LH�=0. It is important that in these re-
gions both terms in the right-hand side of Eq. �30� are of the
same order and the nontrivial dependence of �0�I ,H� arises
since Eq. �30� is equivalent to the fourth order equation and
in the considered region, all its coefficients turn out to be of
the same order.

Now one can write down the expression for the effective
action �45�, valid near both extremal trajectories. It is enough
to substitute in Eq. �45� the function ��x ,�� in the form of
Eq. �20� with �n

k�x ,��, defined by Eqs. �46�, �49�, and �53�.
Since the eigenvalues ��1

0 tend to zero as T→T0 for saddle-
point trajectory, we have to keep in the expansion of the
effective action over the coefficients �B�1

0 � all terms up to the
fourth order, keeping also the products of the type
	�B1

0�2B−2
k , �B−1

0 �2B2
k
. In result of integrating over x and � �see

Appendix A�, the action �45� takes the explicit form as the
function of coefficients Bn

k,

A	B0
0,B1

0,B−1
0 ,..Bn

k..
 = A	�extr�x�
 − �1	2B1
0B−1

0 B0
0 + �B1

0�2B−2
0

+ �B−1
0 �2B2

0
 − �2�B1
0�2�B−1

0 �2

+
1

2�
n,k

�n
k�Bn

k�2. �56�

Calculation of the coefficients �1,2 is cumbersome but
straightforward. It is necessary to remember that the func-
tions ��n

k �x�, before being used in Eq. �45�, should be nor-
malized. In result one finds

�1 =
2�jc

e
�T

S
�1/2�LH

L
sin� L

LH
�sin 2�0

+ 2� LH

2�J
�2

��LH

L
�sin 4�0 , �57�

�2 =
2�jc

e
�T

S
��LH

L
sin� L

LH
�cos 2�0

+
1

2
� LH

2�J
�2�5��LH

L
�cos 4�0 + 3��LH

L
�� . �58�

VI. OSCILLATIONS OF THE ESCAPE TIME VS
MAGNETIC FIELD

Now we are ready to calculate the escape time of the
“small” Josephson junctions �JJ�, which is given by Eq. �14�.
The imaginary part of the partition function Im Z in Eq. �14�
is determined by the integral over trajectories close to the
saddle-point trajectory �sdl�x� 	see Eq. �20�
. Corresponding
expression for the action was already obtained above and it
is given by Eq. �56�. The functional integral in Eq. �14� is
reduced now to the integration over all coefficients Bn

k.
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Let us start from the integration over the coefficient B0
0.

Since the eigenvalue �0
0 in the vicinity of the saddle-point

trajectory is negative, it requires special considerations. In
order to get the finite answer, one has �before integration� to
perform analytical continuation B0

0→ ib and �only after that�
carry out the integral

�
−�

� dB0
0

�2�
exp�−

1

2
�0

0�B0
0�2 + 2�1B0

0�B1
0B−1

0 �
→ i�

−�

� db
�2�

exp�−
1

2
��0

0�b2 + 2i�1b�B1
0B−1

0 �
=

i

���0
0�

exp�−
2�1

2

��0
0�

�B1
0B−1

0 �2 . �59�

Integration of the coefficients B�1
0 will yet leave it for

further consideration and now perform that one over the co-
efficients B�2

0 , in accordance with the formula

�
−�

� d2B�2
0

2�
exp�− �2

0�B2
0�2 + �1	�B1

0�2B−2
0 + �B−1

0 �2B2
0
�

=
1

2�2
0exp� �1

2

�2
0 �B1

0B−1
0 �2 . �60�

Integrations over the remaining coefficients besides are of
the canonical Gaussian type and can be easily performed.

What concerns the calculation of the real part of the par-
tition function Re Z is determined by integrating over the
trajectories passing close to the minimal trajectory �min�x�
and in this case, one can take the action �56� only with qua-
dratic accuracy over Bn

k.
Performing the above discussed integrations in real and

imaginary parts of the partition function �see Ref. 16�, one
finds the escape time for high enough temperatures T�T0 or
in the narrow vicinity of T0 ��T−T0��T0�,

�esc
−1 = 2T0 exp�− �Amin

sdl � ·

� 1

2���0
0�
�

−�

� d2B1
0

2�
exp�− �1

0�B1
0�2 − �B1

0�4�− �2 + �1
2� 2

��0
0�

−
1

�2
0���

sdl

����0
0��minY1Y2, �61�

with

Y1 = ��
k=1

�
1

��0
k��

n=1

�
1

�2�n
k��

sdl

/��
k=1

�
1

��0
k �

n=1

�
1

�2�n
k�

min

,

�62�

Y2 = ��
n=2

�
1

�2�n
0�

sdl

/��
n=1

�
1

�2�n
0�

min

. �63�

Note that the prefactor in Eq. �61� contains T0 instead of T.
The eigenvalues ��k

n�min,sdl are defined by Eqs. �51� and �54�.
The remaining integral over B1

0 in Eq. �61� can be ex-
pressed in terms of Fresnel integral,

	�x� =
2

��
�

0

x

dt exp�− t2� �64�

and one obtains �esc
−1 in the final form

�esc
−1 =

1

4
��

B
T0 exp�− �Amin

sdl �Y1Y2���0
0�min.

� 1

���0
0�
�1 − 	� �1

0

2�B
�exp

��1
0�2

4B �
sdl

, �65�

with

B = − �2 + �1
2� 2

��0
0�

−
1

�2
0�

sdl

. �66�

Using the explicit Eq. �54� for eigenfunctions �n
0, one can

present Eq. �63� in terms of Euler gamma function ��x�,

Y2 =
4�jc�

e

��	2 − n1�H�
�	2 − n2�H�
�sdl

��	1 − n1�H�
�	1 − n2�H�
�min
,

while the values 	n1,2
saddle and 	n1,2
min are the roots of equa-
tion

��T�	n2 + Qsh�T�n
 +
LH

L
sin� L

LH
�cos 2�0

+ � LH

2�J
�2

��LH

L
�cos 4�0 = 0, �67�

written for �0= ��0
saddle ,�0

min� accordingly. From Eq. �67� one
can see that the finiteness of L leads to strong variation of Y2
and, consequently �esc

−1 , as the function of magnetic field even
for small junction with L��J.

All quantities ��Amin
sdl , T0, and �esc

−1 � are oscillatory func-
tions versus magnetic field 	see Eqs. �17�, �30�, �34�, �44�,
�55�, and �62�
. As the example let us consider the behavior
of T0�H�. In the first approximation by parameter �L /�J�2,
one can obtain from Eqs. �41�–�55� the following simple
expression for the crossover temperature T0�H�:

T0
2 + �T0 −

ejcSRsh

�
���1

2�H� − � I

jcS
�2

− 2
�2�H�
�1

2�H�
��1

2�H� − � I

jcS
�2 = 0,

with �=QshT=� / �2�RshC
�� and �1 and �2 defined by Eq.

�38�. Its physical solution

T0�H� =
�

2
��1 +

4ejcSRsh

��
���1

2�H� − � I

jcS
�2

− 2
�2�H�
�1

2�H�
��1

2�H� − � I

jcS
�2��1/2

− 1� �68�

evidently oscillates versus the magnetic field as it is sketched
in Fig. 3. Equation �68� can be used until the second term in
square parenthesis is smaller than the first one. Close to the
special points �L=�nLH� this condition can not be valid
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more and in such a case Eqs. �30� and �67� should be solved
exactly.

In contrast to Y2, the prefactor Y1 contains only terms
with �0

k �k�0� and in result depends on magnetic field
weakly. Nevertheless this dependence turns out to be singu-
lar due to the logarithmic divergence of the product in Eq.
�62�. Details are presented in Appendix B.

Equation �65� enables us to estimate the width of the
crossover region between Arrenius and macroscopic quan-
tum tunneling �MQT� regimes. It can be found from the con-
dition that the argument of the Fresnel function is of the
order of one,

��1
0�sdl � 2�B . �69�

VII. FINAL REMARKS

Even a weak external magnetic field can strongly change
the value of the critical current of the JJ of a small size. Note

that some special points of external magnetic field appear in
the problem under consideration. In the vicinity of these
points the perturbation theory fails and the escape time can
be calculated only by means of the exact solution of the
equations on T0 and �0. It is worth mentioning that our gen-
eral equations enable us to consider even such points.

In the vicinity of the crossover temperature T0 from Ar-
renius law to the quantum tunneling, one can observe the
strong effect of the finiteness of the junction length L even in
the pre-exponential factor.
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APPENDIX A

The eigenvalues ��1
0 at the saddle-point trajectory tend to

zero as T→T0. In result, when one substitutes the function
��r ,�� in the form �20� to the action �45� and then expands
the expression for action in Taylor series, he has to keep
“dangerous” terms, containing B�1

0 , up to the fourth order.
Moreover one also has to keep products of the type
	�B1

0�2B−2
k , �B−1

0 �2B2
k
. All other terms �containing Bn

k with k
�0 and n�0, �1� are enough to take in the second-order
approximation. In this way one writes the value of the effec-
tive action �45� valid near both extremal trajectories in the
form �see Ref. 14�

A	��x,��
 = A	�extr�x�
 +
1

2�
n,k

�n
k�Bn

k�2 −
2�Sjc

e
�T�

−L/2

L/2 dx

L
sin	2�extr�x�
�2

B1
0B−1

0 �1
0�−1

0

��1
0���−1

0 � �
k

B0
k�0

k

��0
k�

+
�B1

0�2��1
0�2

��1
0�2 �

k

B−2
k �−2

k

��−2
k �

+
�B−1

0 �2��−1
0 �2

��−1
0 �2 �

k

B2
k�2

k

��2
k�  −

2�Sjc

e
T�

−L/2

L/2 dx

L
cos	2�extr�x,��


�B1
0�2�B−1

0 �2

��1
0�2��−1

0 �2 ��1
0�2��−1

0 �2, �A1�

where �..� is the norm of the function. Let us carry out the
integrals entering in the Eq. �A1� in the explicit form

I1 = �
−L/2

L/2 dx

L
sin	2�extr�x�


�1
0�−1

0 �0
0

��1
0���−1

0 ���0
0�

=
1

S3/2�LH

L
sin� L

LH
�sin 2�0 + 2� LH

2�J
�2

��LH

L
�sin 4�0

�A2�

and

I2 = �
−L/2

L/2 dx

L
cos�2�extr�x��

��1
0�2��−1

0 �2

��1
0�2��−1

0 �2

=
1

S2�LH

L
sin� L

LH
�cos 2�0 +

1

2
� LH

2�J
�2�5��LH

L
�cos 4�0

+ 3��LH

L
�� , �A3�

with the function � defined by Eq. �35�. Using these expres-
sions in Eq. �A1� one can obtain the final expression �56� for
the effective action valid for trajectories close to the extremal

T0

L/LH0 � 3��/2�/2 2��

FIG. 3. Schematic dependence of crossover temperature on
magnetic field.
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ones. Integrals �A2� and �A3� appear in Eq. �56� by means of
the functions �57� and �58�

�1 =
2�jcS

e
�TI1, �2 =

2�jcST

e
I2. �A4�

APPENDIX B

One can see that expression for the pre-exponential factor
Y1 �62� is divergent at �n ,k�→� 	this follows from Eq.
�53�
. This divergency has the logarithmic character and
should be cut off at n�Tc /T0 and k��J /�eff. As a result
with the logarithmic accuracy, one can find,

Y1 = ��
k=1

1

��0
k��

n=1

�
1

2�n
k�

sdl

���
k=1

�
1

��0
k �

n=1

�
1

2�n
k�

min

−1

= exp�−
1

2

LH

L
sin� L

LH
�	cos�2�0

sdl� − cos�2�0
min�
�

k=1

�
1

1 − � LH

L �k�2 �
n=−�

�
1

��k�J

L �2
+ ��n2 + Qsn�n��

�
exp�−

1

2

LH

L
sin� L

LH
�	cos�2�0

sdl� − cos�2�0
min�
� �

k=1

�J/�eff

�
n=−Tc/T0

Tc/T0 ���k�J

L
�2

+ ��n2 + Qsn�n��−1

. �B1�

The double sum in the first multiplier in the right-hand side of this expression converges at infinity.
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